Expander graphs from Curtis–Tits groups
نویسندگان
چکیده
منابع مشابه
Symmetric Groups and Expander Graphs
We construct explicit generating sets Sn and S̃n of the alternating and the symmetric groups, which turn the Cayley graphs C(Alt(n), Sn) and C(Sym(n), S̃n) into a family of bounded degree expanders for all n. This answers affirmatively an old question which has been asked many times in the literature. These expanders have many applications in the theory of random walks on groups, card shuffling a...
متن کاملExpander Graphs
This paper will introduce expander graphs. Kolmogorov and Barzdin’s proof on the three dimensional realization of networks will be discussed as one of the first examples of expander graphs. The last section will discuss error correcting code as an application of expander graphs to computer science.
متن کاملExpander Graphs
Let AG be the adjacency matrix of G. Let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of AG. Sometimes we will also be interested in the Laplacian matrix of G. This is defined to be LG = D−AG, where D is the diagonal matrix where Dvv equals the degree of the vertex v. For d-regular graphs, LG = dI −AG, and hence the eigenvalues of LG are d− λ1, d− λ2, . . . , d− λn. Lemma 1. • λ1 = d. • λ2 = λ3 = . ...
متن کاملLecture 17: Expander Graphs 1 Overview of Expander Graphs
Let G = (V,E) be an undirected d-regular graph, here, |V | = n, deg(u) = d for all u ∈ V . We will typically interpret the properties of expander graphs in an asymptotic sense. That is, there will be an infinite family of graphs G, with a growing number of vertices n. By “sparse”, we mean that the degree d of G should be very slowly growing as a function of n. When n goes to infinity (n → ∞), d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 2012
ISSN: 0097-3165
DOI: 10.1016/j.jcta.2011.10.007